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An asymptotic method is proposed for solving transient dynamic contact problems of the theory of elasticity for a thin strip. The 
solution of problems by means of the integral Laplace transformation (with respect to time) and the Fourier transformation 
(with respect to the longitudinal coordinate) reduces to an integral equation in the form of a convolution of the first kind in the 
unknown Laplace transform of contact stresses under the punch. The zeroth term of the asymptotic form of the solution of the 
integral equation for large values of the Laplace parameter is constructed in the form of the superposition of solutions of the 
corresponding Wiener-Hopf integral equations minus the solution of the corresponding integral equation on the entire axis. In 
solving the Wiener-Hopf integral equations, the symbol of the kernel of the integral equation in the complex plane is presented 
in special form - in the form of uniform expansion in terms of exponential functions. The latter enables integral equations of 
the second kind to be obtained for determining the Laplace-Fourier transform of the required contact stresses, which, in turn, 
is effectively solved by the method of successive approximations. After Laplace inversion of the zeroth term of the asymptotic 
form of the solution of the integral equations, the asymptotic solution of the transient dynamic contact problem is determined. 
By way of example, the asymptotic solution of the problem of the penetration of a plane punch into an elastic strip lying without 
friction on a rigid base is given. Formulae are derived for the active elastic resistance force on the punch of a medium preventing 
the penetration of the punch, and the law of penetration of the punch into the elastic strip is obtained, taking into account the 
elastic stress wave reflected from the strip face opposite the punch and passing underneath it. 0 2003 Elsevier Science Ltd. All 
rights reserved. 

1. INTEGRAL EQUATIONS 

Transient dynamic contact problems (TDCPs) of the theory of elasticity, concerning the penetration 
of a rigid punch into an elastic strip using the integral Laplace transformation (with respect to time t) 
and Fourier transformation (with respect to the longitudinal x coordinate) [ 11 

L&x, y, p) = 7 u(x, y, r)e-P’dt (1.1) 
0 

P(a, y, p) = y- uL(x, y, pp-u (1.2) 

successively applied to the differential equations of the theory of elasticity and to the boundary 
conditions, taking into account the zero initial conditions, reduce to solving an integral equation of the 
first kind in dimensionless form [2-51 

k(t, p) = j K(cx, p)eia’da, f;(x, p) = p~-‘Af~(x, p), A = 2 
r ap 

where (~~(5, p) is the Laplace transform of the distribution function of the required contact stresses 
under the punch, fL(x, p) is the Laplace transform of the function f(x, t) describing the shape of the 
punch and the manner in which it penetrates into the elastic medium, n is the Lame coefficient of the 
elastic medium, a is the half-width of the punch, A is a certain constant, which depends on the parameter 

iPrikl. Mar. Mekh. Vol. 66, No. 5, pp. 880-805, 2002 

841 



V. B. Zelentsov 842 

p = c21c1, and cl 
of displacements 

and c2 are the propagation velocities of the longitudinal and transverse elastic waves 
and stresses in the elastic medium. The contour of integration F lies in the complex 

plane-a = cr + iz and passes from - to +m at an angle -argp to the real axis (z = 0). 
The symbol of the kernel of integral equation (1.3) is the function K(a,p); it is even with respect to 

a and meromorphic in the complex plane a = cr + i2, where there are two series each of a denumerable 
set of zeros and poles depending on the parameter p, and, for large and small values of a, has the 
following asymptotic behaviour 

K(a, p) =I a I-’ +O(l a Ie3 exp(-2yA%,)), Re(A-‘0,) > 0 when a + 00 (1.4) 

K(a,p)=K(O,p)+O(a*) when a+0 (1.5) 

cr2= JXjF, y=hla 

where h is the width of the elastic strip. 
In the integral equations of TDCPs of the theory of elasticity, the function K(a, p) is expressed by 

the ratio of entire functions that are linear combinations of exponential functions 

exP(-YA-‘(noi+ka2)); n+k=2m; m,n,k=0,1,2..., 0, = @FI 

In such a case K(a, p) can be represented by a double functional series 

Kta, p) = K(a) + K(a) f, i Qnk(Ooexp(-yA~‘(nol + ka2 N 
n=O k=O 

Re (Oi) > 0, i= 1,2 

where 
Q,&a)=O, Q&)=0; n+k=2m+ 1; m=0,1,2 

(1.6) 

and function K(a) is the symbol of the kernel of the integral equations of TDCPs concerning the 
penetration of a rigid punch into an elastic half-plane [2, 31. 

Series (1.6) converges uniformly in the complex plane c1 = o -t iT with sections drawn within it from 
branching points of the algebraic type a = -+i, a = +ifi to an infinitely distant point -1-b. The coefficients 
of this series Qnk(a) are rational fractional functions of csl and cr2. When calculating the roots o1 and 
o2 in the complex plane, the choice of the branch is determined by condition (1.6), where fi = 1. 

2. ASYMPTOTIC SOLUTION OF INTEGRAL EQUATION (1.3) FOR LARGE p 

After deformation of the contour of integration I in the complex plane a = o + i7 on the real axis 
(r = 0), the zeroth term of the asymptotic form of the solution of integral equation (1.3) for small A 
(large p) can be represented in the form of the superposition of functions [6] 

which are solutions of the following integral equations 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Integral equations (2.2) and (2.3) as a result of replacement of the variables according to the formulae 
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(a plus sign for (2.2) and a minus sign for (2.3)) 

k(=Ae’-1, fx=A.r’-1, kdi+A&’ 

are transformed into Wiener-Hopf integral equations [6-81 (the primes are omitted) 

- x, p)dt = 2nA-’ foL(M.x T 1, p), Ocx < 00 (2.5) 

Equation (2.4) after replacement of the variables, 

is converted into an integral equation of the convolution type on the entire axis [8] 

j cp% P)W --x, p)dg = 2nA-‘foL(Ax, p), -00 <x < m (2.6) 

The solution of integral equation (2.6) is obtained by means of integral Fourier transformation (1.1) 
and is given by the formula 

(2.7) 

Following the general scheme for solving Wiener-Hopf integral equation (2.5) (7, 81, to determine 
its solution cp,“(x, p), at the first step, integral equation (2.5) (for the upper signs) is under-defined on 
the entire real axis, and then, using the integration Fourier transformation (1.2), is reduced to solving 
the functional equation 

K@, p)cp~@. P) = A-‘f+w(a, p)+ (2W’eTu;(a, p) CW 

which holds in the band r- < Im (a) < z, of the complex plane a = o + ir Here, the notation 

e-Y(a, p) = 7 e(x, p)eiwdx 

is introduced. The function (~?~(a, p) is regular in the upper half-plane (Im (a) > z-, -j3 6 r- < 0, 
/3 > 0), and ekF(a,p) is regular in the lower half-plane (Im (a) < r+, 0 < r+ C p, p > 0). 

The next, key stage of the solution of functional equation (2.8) is the factorization of the function 
K(a, P) 

K(a, P) = K+@, pYL(a, p) 

The functions K,(a, p) are regular in the upper (Im (a) > r-) and lower (Im (a) < r,, z, > 0) half- 
planes, respectively. In the general case, the determination of K,(a, p) leads to cumbersome singular 
quadratures [8]. It is more convenient and, as will be shown below, physically more sound to represent 
the function K(a,p) in functional equation (2.8) in the form of expansion (1.6) in the band ] Im (a) ) s 0. 
Since the functions K(a) [3-51 and Qnk(a) exp(-yA-‘( no1 + ko2)) are regular in the band ]Im (a)] < p, 
the function K(a, p) in relation (2.8) is regular in this same band of the complex plane a = o + iz 

Substituting series (1.6) into Eq. (2.8) we obtain the functional equation 

WQcp!%, P> = Am*fo~(av P) - K(a) 2 i M,,,(a, p)cpy(a, p) + 
n=O k=O 

(2.9) 

M&(a, p) = Q,(a)exp(-yA-‘(no, + kc*)), n + k = 2m, m = 1,2,. . . 

which is regular in the band r- < Im (a) < r+. 
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Since K(a) is the symbol of the kernel of the integral equation of the corresponding TDCP for the 
half-plane [2-51, a method was described in [2,3] for factorization the function K(U), based on a special 
approximation of K(a), taken in special elementary factorized form. This approximation can be carried 
out in the complex plane a = o + iz with any prescribed accuracy [2]. 

After factorizing the function K(a) in Eq. (2.9) 

K(a) = K, (aW- (a) (2.10) 

followed by division by K-(a) of the left- and right-hand sides of Eq. (2.9) we obtain the functional 
equation 

where 

K+(WdF(av P) = g(a, P) - 4a, P) + x-a P) (2.11) 

g(a p) = JE(a, P) 
AK-(a) ’ 

Wx P) = K+(a) 2 i M,,(a, p)cp,L”(a, p) 
n=O k=O 

I e_Lf(a, p) 
x-(a, P) = g K-(a) 

At the next step of the solution of the problem, we will represent the first two functions of (2.12) in 
the form of the algebraic sum of two functions, one of which is regular in the upper half-plane, and the 
second of which is regular in the lower half-plane of the complex plane a = o + ir 

da P) = g+Ox p) + g-h PL Ua p) = L+(a, p) + L(a, PI 

and which can be defined according to the general theorem 1181 

(2.13) 

g+(c P) = & j - g(r’ ‘) 4, 
r, <--a 

g-(a, p) = g(a, p) - g+(a, p) 

L(a, p) = L(a, p) - L+(a, p) (2.15) 

The contours of integration I1 and Iz lie in the band of regularity of Eq. (2.9). 
Substituting expressions (2.14) and (2.15) into Eq. (2.11) and grouping, in different parts’of the 

inequality, the functions that are regular in the lower and upper half-planes, we obtain a new 
equality 

The left-hand side of double equality (2.16) defines the function that is regular in the upper half-plane 
(Im (a) > z-), and the middle part defines the function that is regular in the lower half-plane (Im (a) 
c 7,). Together, they define a certain function F(a, p) that is regular in the band ‘t- < Im (a) < 2,. 
Assuming that qtF(a, p) = alh ( 1 a 1 + -) and taking into account the fact that the functions K,(a), 
g?(a, p), and K,(a, p) are decreasing as ] a 1 -+ M, we conclude that, by Liouville’s theorem [9], the 
function F(a,p) under examination in the complex plane is identically equal to zero. In this case, from 
the double equality (2.16) we obtain two equations for determining the transforms ~$~(a, p) and 
eY(a, P> 

cPY(a, P) 
g+(a. P) =-- t+(a, PI 1 eLFOx, p) 

K+(a) K+(a) ’ 
g-(a,p)-L(a,p)+-i;; K_(a) =0 (2.17) 

Then, taking into account formula (2.15) for determining qt”(a,p) we obtain an integral equation 
of the second kind 

(2.18) 
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in which the contour of integration I lies in the plane of regularity of functional equation (2.16), and 
a lies in the upper half-plane, If a E I, then (2.18) is a singular integral equation of the second kind 
[8, lo] in which the integral on the right-hand side is understood in the sense of the Cauchy principal 
part. Introducing the notation 

Qtc P) = ii 5 &(a. PI, cp,Lf(a. P) = ~+Wfta. PI (2.19) 
n=O k=O 

we obtain an integral equation of the form 

(2.20) 

The series on the right-hand side of the first equality of (2.19) converges uniformly in the complex 
plane a = o + iz with the sections drawn within it that were described in Section 1, and its sum 
Q(a, p) is a function that is continuous in the area of convergence of the series. The following limit 
holds for it 

1 !2(u, p) 1 s Me-*y”-‘! M > 0, u E l- (2.21) 

In this case, when &:(a, p) E L&I) (1 < q c -) for a singular operator from the right-hand side 
of integral equation (2.20) 

(2.22) 

we will obtain the estimate 

11 S(ChpE) 11 Q A,e-2YA-‘a II & 11, A4 > 0 (2.23) 

from which it follows that the operator S is bounded and maps L+(I) (1 < q c -) into itself [8, lo]; 
here, /I.[[ denotes the norm in the space &(I) (1 c q < -). 

On the basis of estimate (2.23) it is possible to select y and A such that for large p 

II s IL, < * (2.24) 

while the solution cp~~(cc,p) from integral equation (2.20) can be obtained by the method of successive 
approximations [ll], and the solution obtained in this way will be unique. 

Returning to integral equation (2.20) we form an iteration scheme of the method of successive 
approximations for solving this integral equation to determine cp $!(a, p) 

(2.25) 

To explain the structure of the solution of integral equation (2.20) or (2.18) obtained by applying the 
method of successive approximations, we put m = 0 in expression (2.25). We obtain 

(2.26) 

where ~+“fd(a, p) contains no exponential functions of the form 

exp(-yA-‘(no, +ko2)), n+ k = 2m, m, n, k = 0, 1,2, . . . (2.27) 
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whereas the integrand in Acp $a, p) contains an infinite functional series in exponential functions 
(2.27) o(&, p) with n + k = 1, 4, 6, . . . . The contour I, is situated in the band of regularity of 
Eq. (2.16). 

Assuming, now, that m = 1, taking expression (2.26) into account we obtain 

cp$(a P) = cpfh PI+ A(P,“flta. P) (2.28) 

where cp$f; (a, p) contains exponential functions of the form (2.27), whereas Aq $ (a, p) also contains 
an infinite set of such functions due to the product of the double series o(&,p) and o([~,P). This means 
that terms of the series with exp(-yA-‘(nor + koz)), with II + k = 2, contained in cp fs (a, p) will be 
made no more accurate by the exponential functions contained in Acp $1; (a, p), since, for these, n +- k 
= 4, 6, . . . . All terms of the series with exponential functions in cp $ (a, p) for which n + k = 4, 6, . . . 
will be made more accurate by terms of the series with exponential functions contained in Ay,$(a,p). 
The contours I, and Iz lie in the band of regularity of Eq. (2.16). 

Continuing the process of iterations (2.29, we obtain at the mth step 

(P+Lfm+,ta, P) = df,A PI+ Aq$t,(a, P) (2.29) 

Ad% 6% P) = 

where q~~~~(ct,p) contains terms of the series with exponential functions of the form (2.27) provided 
that n + k = 2, 4, 6, , 2m, 2m + 2, and Aq$‘c,(a, p) contains an infinite number of terms with 
exponential functions (2.27) due to the product of the double series o(&,p), o(<~,P) . . . o(&,,+,,p) in 
an (m + 1)-tuple integral, for which y1 + k = 2m + 4, 2m + 6, . . . . This means that the terms of the 
series with exponential functions of the form (2.27) with n + k = 2, 4, 6, . . . , 2m, 2m + 2 will be 
made no more accurate by terms of the series with exponential functions contained in Ag$(a,p), for 
which n + k = 2m f 4, 2m + 6, . . All terms of the series with exponential functions in qtf;n(a,~), 
for which II + k = 2m + 2,2m + 4, . , will be made more precise by terms of the series with exponential 
functions contained in Ac~:%~(cx, p). The contours of integration I,, 12, . . ., I,,, lie in the band of 
regularity of Eq. (2.16). 

It follows from the above that the (m + 1)th approximation of cp$~~+,(a, p) to the solution 
cp iF(a, p) of Eq. (2.16) contains terms with exponential functions (2.27) where II + k = 2,4, . . . , 2m, 
2-m + 2, that do not change together with the coefficients of them in subsequent iterations. 

This means that, when determining the solution (~~,,~+~(x,p) in expansion K(a,p) (1.6), we can confine 
ourselves to that number of exponential functions for which II + k s 2m + 2, i.e. 

2m+2 2m+2-n 

K(a7 P> = W) + WN C C Q~(a)exp(--y~-‘Oq +&N 
II=0 k=O 

&(a)=O, &(a)=0 for n+k=2m+l, m=O,l,2 )... 

(2.30) 

I$uthermore, it is not difficult to show that the coefficients of such exponential functions in the solution 
cp+,,+l(a,p) will be of th e same order of accuracy in terms of a as the zeroth term of the solution cp$,(a, 
p). Running ahead, it can be said that, from the physical point of view, the solution (p$Ir,,+,(a: p), 
containing terms with exponential functions (2.27) with II f k = 2,4, . . ,2m, 2m + 2, is the mathematical 
description in Laplace-Fourier representations of m + 1 repeated reflections of the elastic stress wave 
generated by the penetration of the punch and reflected m + 1 times by the opposite face (with respect 
to the punch) of the elastic strip, passing under the punch. 

The (m + 1)th approximation of cp $rm+,(a, p) of the method of successive approximations of the 
solution of Eq. (2.18) is taken as the approximate solution cpf;(x,p) of integral equation (2.3, after its 
Fourier inversion 
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cp t,m+l(X, p) = & 7 qym+l(a, p)e+da, m = 0, 1,2,. . . 

where (~$~+,(a,p) is given by formula (2.29). 
The function ~$,+t(a,p) ’ t k IS a en as the approximation solution (p!(x,p) of integral equation (2.5) 

determined by the same scheme as (pLF +,,+,(a, p), during the implementation of which f,,+(a, p) in 
Eq. (2.8) is defined by the formula 

fo,+(a, p) = 7 fi(--hr + 1, pk+dx 

after its Fourier inversion (2.31) where the plus sign must be replaced by a minus sign. 
The zeroth term of the asymptotic solution #(x,p) of integral equation (1.3) for largep, containing 

a description of m + 1 repeated reflections of the elastic stress wave passing under the punch, is 
constructed by means of formula (2.1) with an indication of the number of m + 1 repeated reflections 
using the subscript 

where the function (pL r,m+l(~,~) is given by formula (2.29) and (pL _,,+t(x,p) is given by formula (2.7). 

3. THE SOLUTION OF TRANSIENT DYNAMIC CONTACT PROBLEMS 

To determine the asymptotic solution of the TDCP for an elastic strip, it is sufficient to apply an inverse 
Laplace transformation to the solution obtained in the previous section for the integral equation of 
the TDCP (1.3) of the function cpf;+t(x, p), which is given by formula (2.32). As a result we obtain a 
function which defines the contact stresses that occur under the punch at 0 < t c 2(m + 2)hlct in the 
form 

(Pm+1 (x9 t) = (P+,a+r (“““.t)+rp-..+,(~,l)-‘P-.a+l($,~) (3.1) 

The functions on the right-hand side of this expression are the originals of the corresponding functions 
on the right-hand side of equality (2.32). 

4. THE SOLUTION OF A TDCP FOR ELASTIC STRIP 

To demonstrate the above method for solving transient dynamic contact problems, we will consider the 
TDCP of the penetration of a rigid punch of width 2u (1x1 s a, y = 0) into elastic strip of thickness 
h(a cx <w,O~y~h)restingonasmoothrigidbase(-= <x<m,h my <m).Attheinitial 
instant of time t = 0, the rate of penetration of the punch is uo, the mass per unit length of the punch 
is m, and there are no friction forces in the contact zone. The shape of the punch and its low of motion 
in an elastic medium are determined by the function f(x, t) (t > 0, x s a) (Fig. 1). 

At the initial instant of time, the elastic strip is at rest, and therefore the displacements of the elastic 
medium u = u(x, y, t) and u = u(x, y, t) at t = 0 and their rates of displacement are taken to be zero. 
The boundary conditions of such a problem in the generally accepted notation of the theory of elasticity 
[12] have the form (t > 0) 

u (x, 0, t) = f(x, t) (I x 1s a), cf,(x, 0, t) = 0 (a < 1 x I< -) 

(4.1) 

7,(x, 0, t) =u (x, h, t) = 2&, h, r) = 0 (1 x I< -) 

where ow and zV are the normal and shear stresses. 
Using integral Laplace transformation (1.1) and Fourier transformation (l-2), applied successively 

to the equations of the theory of elasticity in displacements [12] and to mixed boundary conditions (4.1) 
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“0 
Fig. I 

taking the initial conditions into account, the solution of the TDCP in question reduces to integral 
equation (1.3) where 

A=2(1-fi2) 

K(a,p)= 2(1-P2)<r2R-'(a, p> 

R(a,p)=(2a2 +!)2 ctg(yA-lo*)- 4a20,02 cth(yA%,) 

(4.2) 

The function K(a, p) of the form (4.2) possesses all the properties enumerated in Section 1 and is 
represented in the form of expansion (1.6) but with the guaranteed presence in expansion K(a, p) of 
a finite number of terms, the exponents n + k of which should not exceed the prescribed value 
2(m + 1) (m = 0, 1, 2, . . . ), in the form (2.33) used in implementing the method for solving integral 
equation (1.3) (here and below, the number II + k will, for convenience, be called the exponential index: 
exp(-yA-‘(no1 + ko2))). 

For the function K(a, p) from (4.2) the coefficients Q&a) (n, k = 0, 1, 2, . ..) of expansion (1.6) 
(2.30) for even n + k = 2(m + 1) (m = 0, 1, 2, . . .) are given by the following formulae: 

forn+k=2 

forn+k=4 

&(a)=2R,(R,+R2)R-*, Qm(a)=2R2(R, +R2K2 

Q2* (00 = -8R,R2K2, Q31W=Q,3CW=0 

(4.3) 

(4.4) 

where 

R, =(2a2 +1)2, R2 =4a20,c2, R=R, -R2, 6, =J;x';;?-er, ~5~ =dm (4.5) 

In this case, in expansion (1.6), (2.30) for K(a, p) from (4.2) Q&a) = 0 and Q&a) = 0 for n + k 
= 2m - 1 (m = 1,2, . ..). 



An asymptotic method of solving TDCPs of the theory of elasticity for a strip 849 

Different methods can be used to obtain the expansion of the function K(a, p) of the form (2.30). 
We will indicate one of the simplest methods from the technical viewpoint. For simplicity, we will 
introduce the new notation 

A = K(a, PI, B= K(a), D = da, P) 

The function K(cc, p) of the form (4.2) is represented in the form of the relation 

A=B-DA (4.6) 

B = Ao,R-‘(a), A = 2(1 -p2> 

D = RI R-‘(ctg a; -l)-R,R-‘(ctgof-l), a: =~A-‘G~, i=l,2 

which can easily be verified, while RI, R2, and R are defined by formulae (4.5). Instead ofA, we substitute 
its expression from (4.6) into the right-hand side of equality (4.6) giving 

A=B-D(B-DA)=B-BD+D2A 

Then, substituting, instead ofA, its expression from (4.6) into the right-hand side of the latter equality, 
and continuing such iterations, we obtain at the mth step of the process the following relation 

m+l 
A = B- B 2 (-l)j+’ Di + (-l)m+2 Dm+2A, m = 0, 1,2, . . . (4.7) 

j=l 

The exponential functions exp(-(nay -t koi)) in relation (4.7) are contained only in D and A, and 
here the final term on the right-hand side of relation (4.7) contains exponential functions whose indices 
n + k 3 2(m + 2) which is not difficult to show if the formula is used 

(cth z - 1)’ = 2’ g C’jIi exp(-2jz), Re z > 0 
jd 

with the expression for D in relation (4.7) raised to the power of m + 2. On this basis, the final term 
indicated must be discarded since, in the expansion ofK(cx,p) of the form (2.30) it is necessary to retain 
terms with exponential functions whose indices n + k G 2(m + l), especially as, in subsequent iterations, 
in this case the final term cannot increase the accuracy of the expression given by the terms of the 
expansion with exponential indices n + k G 2(m + 1). The product of B and the expression with the 
summation sign in relation (4.7) contains both terms of the expansion whose exponential indices 
n + k d 2(m + 1) and also exponential functions with indices n + k 2 2(m + 2), obtained after using 
the expression for (cth olv - l)‘, according to formula (4.8) in D. Exponential functions with indices 
n + k 2 2(m + 2) are discarded in the given product in view of the fact that the coefficients of the 
exponential functions in this product with indices 12 + k 3 2(m + 2) cannot be made more accurate 
with m iterations of the process in (4.7) by exponential functions from the last term, the exponential 
indices of which n + k > (2m + 2). To make them more accurate, it is necessary to increase the number 
of iterations m. 

Let us consider the process described for representing K(cc, p) in the form of expansion (2.30) in 
more detail. 

In the case when m = 0, formula (4.7) acquires the form 

A = B- Bi (-l)j+‘D’ + D*A 
j=l 

To retain in the expansion of K(a, p) of the form (2.30) the terms with exponential indices n + k s 2, 
the final term D*A is neglected since it contains exponential functions with indices n + k 3 4. As a 
result, the relation 

A=B-BD 

is obtained, which, in integral equation notation, has the form 

K(a,p)=K(a)-K(a)[R,R-‘S,-R,R-IS,], Si=cthoy-1, i=l,2 
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Replacing S according to formula (4.8) when 1 = 1 and retaining in the expansions the exponential 
functions with indices n + k =S 2, i.e. replacing Si + 2 exp(-2c$), we write the expansion (2.30) for 
K(a,p) with n + k d 2 in the form of a relation in which the coefficients of the exponential functions 
are identical with the corresponding coefficients Q&cl) of the exponential functions in expansion (2.30), 
represented by formulae (4.3). 

In the case m = 1, relation (4.7) is represented in the form 

A=B-B(D’-D2)+D3A 

On the same basis as in the previous case, the last term is neglected and, after changing to integral 
equation notation, we obtain the expanded form 

K(a,p)=K(a)-K(a{(R,RelS, - R,R-‘S,)’ -(R,R-‘S, - R,R-‘Q2] 

Replacing in the last equation 

Si * 2 exp(-2aP) + 2 exp(-4$), $ * 4 exp(-4oP) 

which is required to satisfy the condition IZ + k s 4, we obtain that K(a,p), when m = 1, acquires the 
form of expansion (2.30), the coefficients of the exponential functions of which are identical with the 
corresponding Q,k(a) of expansion (2.30) and represented by formulae (4.4) with n + k = 4. 

Note that, to obtain an expansion of the function K(a, p) of the form (2.30) using a procedure based 
on the iteration of relation (4.6) with the guaranteed presence in this expansion of terms with exponential 
indices n + k G 2(m + 1) (m = 0, 1, 2, .), it is necessary, in order to obtain the key relation (4.7), to 
perform exactly m iterations in relation (4.6). 

The formulae obtained above for representing the function K(a, p) (4.2) in the form (2.30) are 
generalized by the formula 

KM9 P) = K(a) + K(a) C ;I;[ ;;, 2 C qk (a, P) ]i. ,*=[y], m=0,1,2 ,... (4.9) 

where 

qk(a. p) = R& exp(-b,o,) - R,R-' exp(-b,o,), Re(A-lo,) > 0, i = 1,2 (4.10) 

bk = 2kyA-’ 

which indicates the rule for obtaining the representation of K(a,p) in the form (2.30) for any prescribed 
number of terms with the guaranteed presence in it of terms with exponential indices n + k s 2(m + 1) 
(m = 0, 1, 2, . ..). 

We will now write out the solution of integral equation (1.3) of the TDCP considered for the case 
of a single rereflection of an elastic wave from the upper face and passing under the punch. The symbol 
of the kernel of integral equation (1.3), i.e. the function K(a,p), in this case is given by formula (4.8). 
The zeroth term of the asymptotic solution of integral equation (1.3) is written according to formula 
(2.32) with m = 0. 

For the case of a plane punch, where f(x, t) = f(t) (t > 0), the function c~!,~(x, p) = (P~,~(x, p) is 
determined from formula (2.31) with m = 0 as the inverse Fourier transformation of the function 
cp’;y,(a, p), which is given by formula (2.26) and, after calculating the quadratures contained there, in 
the case examined acquires the form 

(4.11) 

A K(O)iaK+(a) 

Lk CC9 P) = qk (6 P> + expt-b& 

where q&,p) and bk are given by formulae (4.10),fL(p) is the Laplace transform of the functionf( t): 
and the summation sign essentially separates symbolically the structure of the new wave under the punch, 
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formed as a result of the arrival under the punch of the elastic stress wave reflected from the opposite 
face of the strip. 

The inverse Fourier transformation of the function cptf;(a,p) (4.11) has the form 

In obtaining formulae (4.11) we used the approximation of the function K(a) from relation (4.6) of 
the simplest form [2, 31 

K(a) = Aex 
a2 +r$ f id,(M,fa)+ M_(a)) I . M,(a) = (JiZZ - JiGi)’ 

in which the constant do is determined from the condition for this approximation and the symbol of 
the kernel K(a) to be identical when c1 = 0 

do = (1 - Jci,” ln[ K(O)?&-t] 

while *irk, are the Rayleigh poles determined from the equation Z?(a) = 0, and the function R(a) is 
given by formulae (4.5). Under the conditions of this approximation we have 

Kl(a)=sexp[fdo TM(a)] 

where K+(a) = K-(-a). Other properties of K,(a) were indicated earlier in [2,3]. 
The function cp!z, i(x, p) is the solution of integral equation (2.6) in which terms describing a single 

rereflection of.an elastic wave from the upper face of the strip are retained, and, in the case examined 
of a plane punch, it is given by a formula obtained from expression (2.7) 

This formula can be obtained from the solution of integral equation (2.6) by the method of successive 
approximations using a scheme similar to that described when solving integral equation (2.5). 

Having determined, in this way, the asymptotic solution of integral equation (1.3) by formulae (2.32) 
with m = 0, (4.12), and (4.13), to find the solution of the TDCP considered it is sufficient to take the 
inverse Laplace transformation of function (2.32) with m = 0, taking into account expressions (4.12) 
and (4.13), which is written in the form 

cp,,(U,t)=(P*,O(U,t)H(r)+ i [2~+,o(~,~-~,,)-W,o(~.t)l~(t-r,,) 
k=l 
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&(u,t) = m(u.t)ex 
P( 

do(l-P)2u 
2(Jr - @4 + Jt--u)2 I 

f2(u,r)=m(u,r)exp -+~o(l+p)+$~ co 
( )f 

de 
$qii.&x 

u 1 

(r - r)df 

%,I (ud = ti, f’tr) + f(O) + 2$, (f’(r - rkl > + f(rkl )) 1 
A0 = A I(c2K(ON, A, = Al(c,K(O)), A = 2(1- p2) 

K-(O)=m, K(O)=2P(l-P’), rXi =a(l+x)/q, rki =2khlq, i=l,2 

(4.16) 

(4.17) 

(4.18) 

The functions Ri(Q, R&), and R(k) are g’ iven by formulae (4.3, and the function r(c) is given by 
the last formula of (4.12). 

In the simplest case, where the displacement of the punch is specified by the formulaf(r) = f&(r), 
where H(r) is the Heaviside function, which corresponds to the instantaneous penetration of a plane 
punch into the strip, the solution of TDCP (4.14)-(4.18) considered takes the simplest form, where 
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while q,,,(x, t) is calculated from formula (4.15), and S(t) is the Dirac delta function. 
Formulae (4.14) to (4.18) enable us to analyse the nature of the stress wave field under the punch, 

including the instant of arrival (t = 2/z/c,) under the punch of the wave front of the first longitudinal 
stress wave reflected from the upper face of the strip. When 0 < t c 2hlct (i.e. before the arrival of the 
first reflected wave), the field of contact stresses under the punch q,#, 0, t) = -cp ,(x, t) ( ]x ] < a) is 
identical with the field of contact stresses for the corresponding TDCP for an elastic half-plane [2,3]. 
When 2h/cl < t < 4h/c,, the longitudinal elastic stress wave that has passed under the punch and been 
reflected from the upper face of the strip at the instant of time t = 2h/c, on the punch edges (x = ?a) 
generates new waves of contact stresses that propagate from the punch edges as from sources with the 
velocity of the longitudinal wave cl. At the front of the longitudinal wave propagating from the punch 
edges, the contact stresses undergo a break with an integrable root type singularity, and they also have 
a constant (time-independent) root-type feature at the punch edges (x = ?a). 

5. THE MAGNITUDE OF THE FORCE ACTING ON THE PUNCH 

The force f’(t) acting on the punch, when the punch is displaced in the elastic medium as given byf(t), 
serves as an integral characteristic of the TDCP and is defined by the formula 

P(t) = a 1 cp(x,t)dx, t > 0 (5.1) 
-I 

where cp(x, t) are the contact stresses under the punch. If one elastic wave rereflected from the upper 
face-of the strip is retained in the solution of the TDCP cp(x, t), we have 

S(t)=CI] cp,(x,r)& O<l<F (5.2) 
-I 

where cp(x, t) is given by formula (4.14). The Laplace transform of the function PI(t) after calculating 
the quadrature [13] takes the form 

2ql + q2p + Ji K5ql + q2p)exp(-rklp) + 
k=l 

!i(p)=T Mi(P2-i~)4eXp(-~k,Sp)dS], M,(U)=p*(U)R,O, i=l,2 
I W4 

P*(U) = 

(5.3) 

The functionsgi(<) and g*(c) are given Lj i’xrmulae (4.17). 
After applying an inverse Laplace transformation [13], we obtain 
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S(t)=~I2q1f(t)+42(f'(t)+f(O))+ t: [5q,(t-t,,)+2q~(f’(t-t,,)+f(tk,))+ 
k=l 

+J#)-J,(t)]), Oct<4h/c, <2a/c, 

H(f - fki) ~ Mi rf(t-r)dr, i=l,2 
fki 

(5.4) 

The terms outside the summation sign in expression (5.4) correspond to the formula for the force 
acting on the punch in the corresponding TDCP for an elastic half-plane; this formula can be obtained 
from the previous results [5] when 0 c t c 2hlci. Under the summation sign there are expressions that 
correspond to the complement to the force acting on the punch, after the arrival under the punch of 
the first stress wave reflected from the upper face of the elastic strip when 2hlci < t c 4hlci. 

In the simplest case, whenf(t) = f&t), corresponding to the instantaneous penetration of the punch 
into the elastic medium, we have 

S(t) = c14fo 2qiH(?)+q26(?)+ t: {5q~H(?-fk,)‘2q~‘(‘-tk])‘J,* (‘)- J1* (‘)I 
1 k=l 

Ji. = Ji 1 f(t) I 1, i = 1,2 

6. THE MOTION OF A PUNCH IN AN ELASTIC MEDIUM 

To establish the law of motion of a punch in an elastic mediumf(t), it is assumed that the mass per unit 
length of the punch m and its velocity at the initial instant f(0) = u. are known. In this case, the 
differential equation of motion of a rigid punch as a point mass and the initial conditions have the form 

mjtt) = Q(t), t > 0; j(O) =uo, f(O) = fo (6.1) 

where f. is the initial displacement of the punch into the elastic medium before the instant of time 
t = 0. The force of elastic resistance of the medium Q(t) = -E’(t), governed by the contact stresses 
between the punch and the elastic strip, is equal to -pi(t) for the time interval 0 < t < 4h/c, and is 
determined by formula (5.4). 

Using methods of the operational calculus [ 14) when solving the Cauchy problem (6.1) to determine 
the Laplace transformfL(p) of the functionf(t), we obtain 

f L(P) = mpfi + mvo 
mp +hp)’ 

f qp)wL(p) = fp(p) (6.2) 

The function Pf is given by formula (5.3). 
Changing in (6.2) to the asymptotic expression forf’(p) for largep, and then to the Laplace originals, 

we obtain the approximate expression 

f(‘)=@~(t)-&,i [u,(t-tk,)E,(t-tk,)+(Ur -2&&(t)+ 
k=l 

I +I w,(r)-L,(7) &(t-r)dr], 
lkl B 1 

o<t<* 
Cl 

sinwt/o. 6, > 0 

E,(t)= H(t)e-"" i shorlw, 6, c 0 
t, 6, =o 

E*(t) = H(t)P' 

I tJl6, (sin6.u -otcosot)/(203), 
(shwt-wtchor)/(2u3), 

6. 6, 
6, <0 

=o > 0 

(6.3) 
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, i=l,2 

u*=w2 jj,=-- Wl 
2m' m 

Formulae (6.3) forf(t) indicate that the law of motion of the punch will be a decaying motion when 
6, s 0 and oscillatory decaying when 6, > 0. 

I wish to thank V. M. Aleksandrov for his interest. This research was supported financially by the 
Russian Foundation for Basic Research (00-01-00428). 
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